Proceed to WirelessDevNet Home Page
Publications, e-books, and more! Community Tutorials Store Downloads, tools, & Freebies! IT Career Center News Home
newnav.gif

Newsletters
EMail Address:



   Content
  - Articles
  - Columns
  - Training
  - Library
  - Glossary
 
   Career Center
  - Career Center Home
  - View Jobs
  - Post A Job
  - Resumes/CVs
  - Resource Center
 
   Marketplace
  - Marketplace Home
  - Software Products
  - Wireless Market Data
  - Technical Books
 
   News
  - Daily News
  - Submit News
  - Events Calendar
  - Unsubscribe
  - Delivery Options
 
   Community
  - Discussion Boards
  - Mailing List
  - Mailing List Archives
 
   About Us
  - About WirelessDevNet
  - Wireless Source Disks
  - Partners
  - About MindSites Group
  - Advertising Information
 

Beyond The Version 1.0 Specification

Chapter 16 excerpted from the Prentice Hall book Bluetooth Revealed, by Brent Miller and Chatschik Bisdikian


Order This Book

Having examined the version 1.0 specification in detail, we now turn our attention to post-version 1.0 matters. In particular we look into the activities of the SIG in developing new profiles, as well as some possibilities for products that use Bluetooth wireless technology. The thesis of this chapter is on new applications that might appear in the realm of Bluetooth technology, rather than on factual content that was explored in the main body of the book. Hence the tone of this chapter and the one that follows is a bit different.

Earlier in the book we noted that for version 1.0 the SIG focused on enabling basic cable-replacement scenarios. The SIG consciously decided to defer profile development that would support many more advanced yet interesting and valuable usage cases so as to accelerate the development of the version 1.0 specification. Many of these new usage models are addressed in profiles developed after version 1.0 publication. In this chapter we examine those profiles under development in the year 2000 along with other associated work within the SIG.

Just as the version 1.0 profiles are not a complete picture of what Bluetooth wireless technology offers, neither is the second round of profiles1to be published by the SIG the final answer about the specification. Indeed, the story for Bluetooth wireless communication may well be one without a definitive end, since industry innovation is likely to spawn new applications of the technology for years to come. In this chapter we examine just a few possibilities that go beyond the first two editions of the specification. In conjunction with the SIG's specification work, we also explore the landscape of Bluetooth products, both those that are being marketed and those that are likely to appear in the foreseeable future.

The SIG Reconstituted

The SIG's original charter technically expired with the publication of the version 1.0 specification. That charter called for the specification's delivery, and once that was achieved, the SIG in one sense ceased to exist. The bylaws of the SIG allowed for the publication of errata to the original specification, and version 1.0B was published in December 1999 with many corrections and clarifications to the version 1.0A specification.

The SIG's work didn't really stop, though, after the initial specification was published. During the latter half of 1999, representatives of the original promoter members of the SIG held frequent discussions about the next steps that the SIG would take. These discussions culminated in December 1999 with the announcement of a newly chartered SIG which included four new promoter companies (3Com, Lucent, Microsoft and Motorola) in addition to the original five founding promoter companies (Ericsson, Intel, IBM, Nokia and Toshiba). Along with the new promoter group, the SIG also had a new organization, including a new class of members called associates. Associate members are somewhere between adopter and promoter members and may participate in specification development and SIG technical meetings. The associate membership category was created to permit broader participation in the SIG, and several companies immediately joined as associates. At the same time, the SIG also announced the formation of several new working groups, most of which are developing new profiles. This work, underway in 2000, is reviewed below.

New Working Groups and Profiles

Some important usage models were deferred during the development of the version 1.0 specification, and a number of new ideas for usage scenarios have surfaced as the Bluetooth technology has evolved. In 2000, the SIG chartered several new working groups to explore many such usage models, with most of them resulting in new profiles. A brief review of each working group underway in 2000 follows.

It should be noted that with the version 1.0 specification available and with many implementations proceeding based upon its contents, backward compatibility is a key concern of the SIG. All of the working groups include compatibility with the version 1.0 specification as one of their core objectives. Indeed, this is why most of the version 2.0 specification work is embodied as profiles: profiles provide a way to introduce new function without affecting those capabilities that already exist. All profiles, save the GAP, are optional. As new profiles become available, implementers may choose to support them without affecting existing functions. The protocols in the core specification are not expected to change significantly as the post-version 1.0 work proceeds; in some cases, optional extensions may be developed. But most new specification content will be delivered in the form of profiles.

Radio 2.0 and Coexistence Working Groups

Chaired by Ericsson and Nokia, the radio 2.0 working group investigates optional extensions to the radio specification. Among these are increased data rates, improvements to baseband functions (especially the inquiry process), "handoff" capability to support roaming, and better coexistence with other technologies operating in the 2.4 GHz spectrum.

Perhaps the most prominent feature under investigation by the radio 2.0 working group is that of higher data rates. The quest for more bandwidth in all types of communication seems insatiable, and most technologies are constantly striving for higher speeds and throughput. Increased data rates have been seen in both wired and wireless communication, with Ethernet and IrDA being but two examples. Bluetooth wireless technology is no exception, and many knowledgeable engineers believe that Bluetooth wireless communication can occur at higher speeds. In 2000, the radio 2.0 working group was looking into at least doubling the raw transmission speed of Bluetooth links to 2 Mbps, with some proposals that could increase data rates even more dramatically.

Like all of the working groups, the radio 2.0 group is concerned with backward compatibility. The radio 2.0 specification is expected to take the form of optional extensions. Fundamental principles of the Bluetooth radio, including global operation, low cost and short-range communication, will continue to be at the heart of the radio specification.

One particular radio consideration, that of harmony with other 2.4 GHz technologies, merits its own working group: the coexistence working group. This group is concerned with issues such as interference and performance impacts when multiple RF technologies are used in the same time and space. Working with other organizations, such as HomeRF? and the IEEE 802.11 and 802.15 working groups, the coexistence working group produces recommendations to allow the various 2.4 GHz technologies to work well together. One example is the SIG's collaboration with the IEEE 802.15 working group, which was formed in the spring of 1999 to develop standards for wireless personal area networks. In the summer of 1999, the SIG proposed the version 1.0 Bluetooth specification, which had just been published, as a potential IEEE 802.15 standard. A task group within the 802.15 working group was then formed to draft an IEEE 802.15 standard based upon the group of Bluetooth transport protocols2.

Extensions and Enhancements Working Groups

All of the working groups discussed in this section had their genesis in usage cases that were addressed to some extent during the version 1.0 specification development. In each case, some preliminary work was done within the SIG during its early days, but for various reasons the complete profiles for these usage scenarios were deferred. Because the SIG fully expected to complete these profiles for version 2.0 of the specification, the foundation for each was laid in version 1.0. Some of the resulting profiles will trace back to usage cases described in Chapter 3 for which no version 1.0 profile exists. The working groups dealing with version 1.0 extensions and enhancements are:

  • Personal Area Networking (PAN): The PAN working group is co-chaired by Microsoft and Intel and is focused on general IP networking issues, including security. As described in Chapter 15 and elsewhere, the version 1.0 specification does not define a general solution for ad hoc IP networking; it addresses only dial-up networking and LAN access using PPP. The SIG's original networking working group had some preliminary discussions of a general IP networking solution but realized that a comprehensive profile would require more time than was available for the version 1.0 specification. The PAN group was formed to continue this work, with the deliverable of a profile that addresses secure ad hoc networking to support usage models such as collaborative applications (much as described in "Ad Hoc Networking" in Chapter 3).
  • Human Interface Devices (HID): Chapter 3 described the cordless computer usage model and noted that no profile existed for it in version 1.0. The HID3 working group is intended to focus primarily on such a usage scenario. HID refers to computer peripherals such as keyboards, mice, joysticks and the like. HID is an existing specification for the use of such devices with computers, and the HID working group, chaired by Microsoft, is charged with the development of a profile to realize the use of HID over Bluetooth links to realize the cordless computer usage model.
  • Printing: While none of the initial usage models dealt directly with printing, it is such a common task that it was discussed in numerous working groups. The cordless computer usage model describes printer peripherals, and printing is a common example for service discovery scenarios. Co-chaired by Hewlett-Packard® (an associate member of the SIG) and Ericsson and populated by numerous printing experts, the printing working group addresses various usage cases that involve printing over Bluetooth links. These include direct-to-printer scenarios using peer-to-peer communication to print from various devices to a Bluetooth printer.
  • Still Image: In "The Instant Postcard" section of Chapter 3, we note that that scenario is unique among the version 1.0 usage models in that it includes a personal device other than a mobile phone or computing platform, namely a digital camera. The still image working group, chaired by Nokia, works on details of image handling and manipulation in Bluetooth environments, with the instant postcard usage model at the heart of its focus area. This working group formalizes the model of image transfer as described in the instant postcard scenario, and also addresses manipulating the image, perhaps for display or printing (and thus works with the printing working group).
  • Extended Service Discovery Profiles (ESDP): Chapter 8 described a design objective of SDP to permit coexistence with other industry service discovery protocols. The ESDP working group, co-chaired by Microsoft and 3Com, focuses on formal specifications, in the form of profiles, for mapping selected service discovery protocols to Bluetooth environments. The initial focus for these profiles is on the Universal Plug and Play and Salutation technologies (the latter being an outgrowth of [Miller99], which described a Salutation mapping in informal terms), although other profiles for other technologies may come later.

New Applications Working Groups

While each of the working groups noted in the preceding section will produce profiles or other documentation to enable new applications of Bluetooth technology, they all have grown out of work that was started during version 1.0 specification development. The working groups discussed in this section, on the contrary, are truly new domains for Bluetooth wireless communication. While these applications might have been discussed in passing in the original SIG, there was no specific work done to enable them. Each deals with an application of Bluetooth technology that is more than just an evolutionary extension of the version 1.0 usage models. The working groups dealing with new applications are:

  • Car Profile: Automotive manufacturers have expressed great interest in Bluetooth technology for in-vehicle communication. Chaired by Nokia, the car profile working group is investigating solutions for wireless communication within vehicles, including accessing devices and services in a car using Bluetooth links (perhaps automotive information and entertainment systems) and the use of personal devices like pagers, mobile phones and mobile computers in automotive environments. There are many possibilities for the use of Bluetooth wireless communication in vehicles. Consider scenarios such as automatically configuring personalized settings in the automobile (ventilation, seat and mirror positions, radio settings and so on) based upon personal identity carried on a Bluetooth device, or retrieving e-mail through a cellular link between the car's Bluetooth network and a larger network and then having that mail read, using voice technology, over the car's audio system. Numerous other applications can be imagined, and the car profile working group is chartered to specify many of these.
  • Richer Audio/Video (AV): This working group, co-chaired by Philips® and Sony® (both SIG associate members), addresses the use of Bluetooth links for exchanging audio information beyond the simple voice-quality audio specified in version 1.0, as well as motion video data. With multimedia capability on Bluetooth devices, new usage scenarios for movies and video clips, music (with wireless headphones), video conferencing, dictation and others could be enabled. The AV working group deals with the challenges of handling this kind of data-intensive, time-critical information in Bluetooth environments.
  • Local Positioning: Co-chaired by Microsoft and Nokia, this working group investigates the use of Bluetooth wireless technology as a means to determine the geographic location of a device (and often, then, the user of that device). Through judicious use of the properties of the short-range RF interface, Bluetooth technology can be employed to determine local (in-building) position information. The local positioning working group is chartered to provide a scheme to gather such information and make it available in a standard way to applications. The applications could then use this information for a multitude of purposes that might include selection of the "best" device to connect to in a local area, based upon proximity, locating a lost device, and so on.

Creating Additional Profiles

The foregoing are some of the working groups initially chartered by the SIG in 2000. Over time, new working groups may develop more new extensions and profiles for Bluetooth applications. The SIG's new organization promotes participation by a wider group of contributors and enables the formation of new working groups when sufficient industry interest exists for a given topic. The SIG has developed a formal process for the creation of working groups and profiles. As it does for the products discussed below, tremendous opportunity exists for innovation resulting in new applications and profiles.

Bluetooth Products

This section discusses the product landscape for Bluetooth technology. We do not cite specific products or companies;4 rather, we describe general product classes. We survey, in general terms, the first Bluetooth products to reach the market in 2000 and predict the kinds of products expected to appear over time.

Silicon and Developers Kits

The basis of the specification is the radio and baseband; so, too, are these components the fundamental elements of products. Manufacturers building end-user products need to start with a chip set that includes the RF componentry and digital subsystems for the baseband firmware and its associated memory. Original equipment manufacturers (OEMs) have a choice among several suppliers of Bluetooth hardware. In 2000, at least seven vendors were supplying Bluetooth radio modules to the marketplace.

Most silicon manufacturers also can supply complete developers kits to accompany the radio module hardware. Developers kits typically include a circuit board with multiple interfaces to a host, along with protocol stack software that executes on the host. These developers kits allow product manufacturers to create their own products, both hardware and software, and to test and debug those products using the kits' accessible features. These kits typically allow for frequent and easily made changes to the product under development, so that the development process is expedited. Often a large portion of the product development process can be completed using the developers kits and other development tools, without having to create a final product image until late in the cycle.

In addition to general development systems, a specific class of developers tools for Bluetooth wireless technology also emerged in 2000: protocol analyzers. These are tools that can capture the air-interface traffic over Bluetooth links and present this information to the developer in an easy-to-comprehend fashion. These wireless protocol analyzers are analogous to their wired counterparts but do not require a physical connection to the products being tested, since they just need to intercept RF traffic. They tend to be passive receivers which capture the packets in a piconet and transfer this data to a host for processing. The processing might include separating packets from each of the various layers in the stack and displaying that data in human-readable form on the host. Protocol analyzers can be especially helpful in Bluetooth environments because the actual bit streams transferred over the air-interface can be quite complex.5

Since silicon, hardware, firmware and developers kits enable the production of end-user products, these were the first Bluetooth products available. Numerous such hardware and development platforms became available beginning in mid-2000.

Legacy Product Enablers

One way to quickly introduce Bluetooth technology to the marketplace is to produce "add-on" components that attach to existing products to enable them for Bluetooth wireless communication. Examples of such products include PC cards (also known as PCMCIA cards) for notebook computers and similar devices and hardware "plug-ins" (sometimes informally called "dongles"; we use the two terms interchangeably) that attach to a standard interface such as a serial or USB port.

The first PC cards with associated protocol stack software and drivers for popular PC platforms were announced in 2000, with some being demonstrated at developers conferences. These Bluetooth PC cards work similarly to other PC cards; the card is installed in the computer, along with its associated software, and the system is presented with a new interface (in this case, one for Bluetooth wireless communication). A primary advantage of PC cards here is in adding capability for Bluetooth wireless communication to existing machines in a straightforward manner. Without the purchase of a new computer, a new feature becomes available. One disadvantage is that the Bluetooth technology is not seamlessly integrated into the system, as it would be if included in the base manufactured unit. Thus performance may not be optimal, due to considerations such as antenna placement (which is necessarily on the PC card itself, or perhaps elsewhere via a cable connection; in either of these cases, fragility is one concern). In addition, PC card slots on mobile computers typically are limited to one or two, so a Bluetooth PC card occupies a slot that might otherwise be used for other features.

Interface add-ons provide a similar way to enable existing devices with Bluetooth wireless communication. These devices typically plug into an existing standard interface, such as an RS-232 serial port or a USB port. As with PC cards, a dongle with the appropriate protocol stack and driver software can enable the existing interface to support Bluetooth wireless communication. From the system's point of view, the traffic is directed over the existing port just as it would be in a cabled environment, but the interface add-on then receives and transmits that data over the Bluetooth air-interface. The advantages and disadvantages of dongles are similar to those of PC cards: they can enable immediate use of the Bluetooth technology on existing devices, but they might exhibit nonoptimal performance and fragility while taking up one of the system's interface ports.6Interface add-ons can be constructed for many types of devices, not just computers, thus (at least theoretically) enabling any device that exports a standard interface to make use of Bluetooth wireless communication. Handheld computers, digital cameras, printers, scanners and other devices are all candidates for add-on Bluetooth solutions. However, packaging dongles for use on small handheld devices might in some cases make the resulting device significantly larger and less convenient to use. Dongles for use with equipment that typically is stationary, such as printers, scanners and similar devices, though, is potentially quite valuable.

Because PC cards and interface add-ons can enable legacy devices to immediately utilize Bluetooth technology, these devices were some of the first end-user products to appear in 2000. The use of standard interfaces, like serial and USB ports, combined with the freedom from extensive electromechanical design and packaging as is required for integrated solutions, makes the production of these legacy device enabling products relatively straightforward.

Computers and Mobile Phones

Given the composition of the original SIG's promoter members, who have significant business interests in mobile phones and personal computers (both desktop and mobile), it is not surprising that these devices were among the first end-user products to have Bluetooth technology integrated into them. All of the version 1.0 cable-replacement usage models involve a phone, a computing platform, or both.

Among the first products to be announced and demonstrated were Bluetooth mobile phones and headsets. Most major mobile phone manufacturers indicated that they will ship handsets (and in many cases, also headsets) with Bluetooth technology in 2000. The popularity of mobile telephones results in very high volume manufacturing (in the hundreds of millions of units) of these devices; hence mobile phones are a significant influence on Bluetooth module proliferation. If a significant portion of mobile phones include Bluetooth technology, then hardware costs can decrease as manufacturing volumes increase. Achieving lower-cost Bluetooth modules then enables their incorporation into other cost-sensitive devices such as consumer electronics (discussed below).

Computers are a key device segment for Bluetooth technology. Mobile computers, especially, have a high affinity for Bluetooth wireless communication and are included in several of the version 1.0 profiles. A number of major mobile computer manufacturers planned to incorporate Bluetooth technology in their products in 2000. Furthermore, through the use of PC cards (described above), the large installed base of mobile PCs can be enabled with Bluetooth technology in the short term, in addition to integrated solutions that may be offered by computer manufacturers. Moreover, Bluetooth wireless communication is not just for PCs; prototype solutions for several handheld computers were demonstrated at developers conferences in 2000, so these devices are also expected to incorporate Bluetooth technology.

Other Products

The initial marketplace for Bluetooth wireless communication is populated by mobile telephones and computers and associated accessories and add-on components for these devices. This is not surprising, given the composition of the SIG's promoter group. But the complete SIG membership also includes manufacturers and software developers from many industries.

Given the SIG's post-version 1.0 work on printing, still image and automotive solutions, we expect to see Bluetooth technology incorporated in printers, digital cameras and automobiles in the foreseeable future. Leading manufacturers in each of these industries are actively participating in the SIG, and there is momentum to produce equipment with Bluetooth wireless communication capability.

As the technology's costs continue to decrease over time, many consumer electronic devices may incorporate Bluetooth wireless communication. Again, with leading industry players being involved in the SIG, Bluetooth devices including televisions, stereos and other audiovisual devices are expected to appear in the marketplace. Chapter 3 discussed what the SIG calls "the ultimate headset," which can be used with computers and mobile telephones. As other audio devices incorporate Bluetooth technology, such a headset might be used with portable CD players, automobiles, stereos and other such devices, perhaps enabling an "ultimate ultimate headset." Other products in which Bluetooth technology could be used include universal remote controls, household appliances and even toys. Bluetooth technology certainly has the potential to be widely deployed in enterprises, homes and public venues. Successful introduction of the first devices can help to enable positive perception, user experience and value for users of many types of devices. We believe that Bluetooth wireless communication is well positioned to make inroads in many different devices and marketplaces.


1.Tentatively called version 2.0 of the specification, although this is subject to change before final publication.

2.The IEEE 802 standards are concerned only with the two lowest communication layers, the physical and data link layers. As such, only the group of Bluetooth transport protocols is relevant to an 802 standard, and this subset of the protocol stack is the basis for the 802.15 proposal.

3.Not to be confused with the hidden computing usage model.

4.The official Bluetooth SIG web site, http://www.bluetooth.com, includes a section that links to currently available products.

5.Consider all of the operations that might occur on the data before it is transmitted over the air-interface: packetization, FEC, whitening, encryption and other transformations could make the over-the-air data bear little resemblance to the logical PDUs generated by upper layers of the stack.

6.For a USB interface, this latter consideration is minimized through USB's "multi-drop" device attachment scheme.

Sponsors

Search

Eliminate irrelevant hits with our industry-specific search engine!









Wireless Developer Network - A MindSites Group Trade Community
Copyright© 2000-2010 MindSites Group / Privacy Policy
Send Comments to:
feedback@wirelessdevnet.com